H=-16t^2-16t+180

Simple and best practice solution for H=-16t^2-16t+180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2-16t+180 equation:



=-16H^2-16H+180
We move all terms to the left:
-(-16H^2-16H+180)=0
We get rid of parentheses
16H^2+16H-180=0
a = 16; b = 16; c = -180;
Δ = b2-4ac
Δ = 162-4·16·(-180)
Δ = 11776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11776}=\sqrt{256*46}=\sqrt{256}*\sqrt{46}=16\sqrt{46}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{46}}{2*16}=\frac{-16-16\sqrt{46}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{46}}{2*16}=\frac{-16+16\sqrt{46}}{32} $

See similar equations:

| 10x+81=x+63 | | 16a-9a-2a=15 | | 20v+3v-21v+2v-2v=2 | | 0.5((x^2+5x+136)^(2/3))=50 | | 0.5(x^2+5x+136)^(2/3)=50 | | 4y=5-30 | | 3t^2-46t+15=0 | | 7r-6r-r+4r=16 | | 2q^2-13q-15=0 | | 17h+2h-10h=18 | | 3x+x=2x+6x | | 18w-17w=8 | | 11c-10c=3 | | 13-15t=-2t^2 | | 5/16-7/8p=3/16 | | 9-9x=7+5x | | 0.25x-3=0.50x+2 | | 16x-15x=6 | | 2(2)-3y=6(2)+2(2) | | 13a-8a=10 | | 11j^2+43j-4=0 | | X(x+5)=2x(x+1) | | 16=4q-8 | | 6v^2-22v+12=0 | | 0.5x-1=0.25x+2.5 | | 20q^2+16q-36=0 | | 9u^2+46u+5=0 | | 6x-91+2x+53=180 | | s-68=11s=79 | | 17.5=7xx= | | 21(s+22)=945 | | 3x+10=15+2x |

Equations solver categories